Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model.

نویسندگان

  • Monica Nizzardo
  • Chiara Simone
  • Federica Rizzo
  • Sabrina Salani
  • Sara Dametti
  • Paola Rinchetti
  • Roberto Del Bo
  • Kevin Foust
  • Brian K Kaspar
  • Nereo Bresolin
  • Giacomo P Comi
  • Stefania Corti
چکیده

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease affecting children. It is caused by mutations in the IGHMBP2 gene (11q13) and presently has no cure. Recently, adeno-associated virus serotype 9 (AAV9)-mediated gene therapy has been shown to rescue the phenotype of animal models of another lower motor neuron disorder, spinal muscular atrophy 5q, and a clinical trial with this strategy is ongoing. We report rescue of the disease phenotype in a SMARD1 mouse model after therapeutic delivery via systemic injection of an AAV9 construct encoding the wild-type IGHMBP2 to replace the defective gene. AAV9-IGHMBP2 administration restored protein levels and rescued motor function, neuromuscular physiology, and life span (450% increase), ameliorating pathological features in the central nervous system, muscles, and heart. To test this strategy in a human model, we transferred wild-type IGHMBP2 into human SMARD1-induced pluripotent stem cell-derived motor neurons; these cells exhibited increased survival and axonal length in long-term culture. Our data support the translational potential of AAV-mediated gene therapies for SMARD1, opening the door for AAV9-mediated therapy in human clinical trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motoneuron transplantation rescues the phenotype of SMARD1 (spinal muscular atrophy with respiratory distress type 1).

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal form of infantile motoneuron disease. There is currently no effective treatment, although motor neuron replacement is a possible therapeutic strategy. We transplanted purified motor neurons into the spinal cord of nmd mice, an animal model of SMARD1. We also administered pharmacological treatment targeting the inductio...

متن کامل

Clinical and molecular features and therapeutic perspectives of spinal muscular atrophy with respiratory distress type 1

Spinal muscular atrophy with respiratory distress (SMARD1) is an autosomal recessive neuromuscular disease caused by mutations in the IGHMBP2 gene, encoding the immunoglobulin μ-binding protein 2, leading to motor neuron degeneration. It is a rare and fatal disease with an early onset in infancy in the majority of the cases. The main clinical features are muscular atrophy and diaphragmatic pals...

متن کامل

Differentiation defects in primary motoneurons from a SMARD1 mouse model that are insensitive to treatment with low dose PEGylated IGF1

Muscle atrophy and diaphragmatic palsy are the clinical characteristics of spinal muscular atrophy with respiratory distress type 1 (SMARD1), and are well represented in the neuromuscular degeneration (Nmd(2J) ) mouse, modeling the juvenile form of SMARD1. Both in humans and mice mutations in the IGHMBP2 gene lead to motoneuron degeneration. We could previously demonstrate that treatment with a...

متن کامل

iPSC-Derived Neural Stem Cells Act via Kinase Inhibition to Exert Neuroprotective Effects in Spinal Muscular Atrophy with Respiratory Distress Type 1

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a motor neuron disease caused by mutations in the IGHMBP2 gene, without a cure. Here, we demonstrate that neural stem cells (NSCs) from human-induced pluripotent stem cells (iPSCs) have therapeutic potential in the context of SMARD1. We show that upon transplantation NSCs can appropriately engraft and differentiate in the spin...

متن کامل

Treatment with trkC agonist antibodies delays disease progression in neuromuscular degeneration (nmd) mice.

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal autosomal recessive disorder seen in infants. It is characterized by lower motor neuron degeneration, progressive muscle paralysis and respiratory failure, for which no effective treatment exists. The phenotype of neuromuscular degeneration (nmd) mice closely resembles the human SMARD1. The identification of the mutate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science advances

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2015